Introduction to
Classes and Objects

David Greenstein
Monta Vista High School



Client Class

* A client class is one that constructs and uses objects of
another class.

B is a “client” of A

public class A { public class {
private int fieldl;
public A() {} public yvoid/ bMethodl () {
. X A s = new A();
public void\aMethodl () {} v
o s.aMethodl () ;
private vdid §Method2 () {} }

} " }

B only has access to A’s

public constructors and methods
Pl )



Public vs. Private

Public constructors and methods of a class are its
interface with classes that use it (e.g. its clients).

All fields are usually declared private and hidden from
clients.

Constants in a class are designated private final.

In some rare cases, a constant is universal and it is
made public static final. (e.g. Math.PIl, Math.E)

“Helper” methods that are needed only inside the class
are declared private.



Public vs. Private (cont)

* Private constructors are used when the only client is
the class itself.

* A private field is accessible anywhere within the class’s
source code.

® Any object can access and modify a private field of
another object of the same class.

public class Fraction

{

private 1int num, denom;

public multiply (Fraction other)
{

int newNum = num * other.num;



) . .
Controlling Access in Java

e public modifier

| Package 1 Package 2

public
field & method
can be “seen”
by everyone




3

Controlling Access in Java

e private modifier

Package 1 . ©  Package 2
Alpha - Delta

. field & method——
can be “seen” :
only inside Epsilon

the class




Controlling Access in Java

e protected modifier

Package 1 . ©  Package 2
' Delta

protected ;
field & method——
can be “seen” :
inside package
and subclass




Controlling Access in Java

e no modifier

Package 1 . ©  Package 2
' Delta

<no modifier> 5 BetaSub
field & method——
can be “seen” :

only Epsilon

iInside package




Controlling Access in Java

* Field/Method Access Summary

e LR

e 0w

e The AP Exam (and this class) only use public and private
modifiers.




b

 Accessors and Modifiers

* A programmer often provides methods, called
accessors, that return values of private fields; methods

that set values of private fields are called modifiers or
mutators.

* Accessors’ names often start with get.

e Modifiers’ names often start with set.

public class Fraction

{

private int num, denom;

public int getNum() { return num; }
public void setNum(int n) { num = n; }



Encapsulation

* Hiding the implementation details of a class is called
encapsulation. (e.g. making all fields and helper methods private)

* Encapsulation helps in program maintenance. A change in one
class does not affect other classes.

* Aclient of a class interacts with the class only through well-
documented public constructors and methods; this facilitates

team development.

public class A {
private int fieldl;

¥
/’////’ public A() {} Public

Encapsulated —
(Hidden) public void aMethodl () {}

\\\\\\*Lérivate void aMethod2 () {}
}

interface




Constructors

A constructor is a procedure for creating objects of the
class. It is different than a method.

Most constructors are public.
A constructor often initializes an object’s fields.

Constructors do not have a return type (not even void)
and they do not return a value. public class a {

. public A() { ... }
All constructors in a class public A(int a, String b)

have the name of the class. o
}
Constructors may take parameters.



Constructors (cont)

e |f a class has more than one constructor, they must
have a different signature.

* Programmers often provide a “no-args” constructor
that takes no parameters.

e |f a programmer does not define any constructors, Java
provides one default no-args constructor, which
allocates memory and sets . p1ic class 2 |
fields to the default values: _

] public A() { ... }

numbers to zero, objects to public A(int a, String b)
null, boolean to false, and (..
char to null (0) character. y




Constructors (cont)

public class Fraction public Fraction (int n, int d)
{ {
private int num, denom; num = n;
denom = d;
public Fraction ( ) reduce () ;
{ }
num 0;
denom\= 1; public Fraction (Fraction other)
} { 7y
num = other|.num;
public Fragtion (int n) denom = othfer.denom;
{ }
num = n\
denom 1;

}
// Continued

copy constructor
no-args
constructor



Constructors (cont)

* A nasty bug!!!

Compiles fine, but the
compiler thinks this is
a method and uses

MyWindow’s
default no-args constructor
instead!!




.

Constructors (cont)

Constructors of a class can call each other using the keyword
this.

Using this is a good way to avoid duplicating code, and it makes
It easier to maintain. You only need to change one constructor so
both are changed.

public class Fraction {

public Fraction (int n) {
this (n, 1);

}

public Fraction (int p, int qg) {
num = p;
denom = Jg;
reduce ()




new Operator

* (Constructors are invoked when using the new operator.

* Parameters passed by the new operator must match the number,
types, and order of parameters expected by one of the

constructors.
public class Fraction {
Fraction fl1 o new Fraction(2); publig|Fraction (int n)
... {
Fraction f2 = new Fraction(3,6);~\\\\\\\\\\\\j;fs(nr 1)
}
publi€| Fraction (int n, int d)
{
num = n;

denom = d;




s
- References to Objects

Fraction fl = new Fraction (3,7); Fraction fl1 = new Fraction(3,7);
Fraction f2 = f1; Fraction f2 = new Fraction(3,7);
a _ ) a _ )
Fraction Fraction
object object
i O Al 2
num=3 num =3
/ denim =7 denim =7
2 \_ Y, \_ Y,
4 )
Fraction
object
Refer to the f2 — J
same object num = 3
denim =7
’ \_ J




Methods

> [public|private] [returnType|void] methodName (parameterList) {
stmtl;

stmt?2; \
} . .
AN

header body signature

* A method is always defined inside a class.

e Methods used by client classes are public.

“Helper” methods only used inside the class are private.

e Style:
> Method names start with a lowercase letter.
- Method names are “verb-like”.



.
e

Passing Parameters

* A parameter is something passed with a method call.

e Any expression that has an appropriate data type can serve as a
parameter.

e Methods can return one primitive or object.

* A “smaller” type can be promoted to a “larger” type.

Calling a method

methodA (3.2, Math.PI);
int a = methodB (2, 3, “hello”);

Method headers

public void methodA (double x, ouble vy){ .. }

public int mefhodB(int m, double n\ String s) { .. }

return type



e

Pass by Value

 Primitive data type parameters are always “pass by
value”. A copy of the value is made of the parameter.

* |n this example, num changes in the fibonacciy)
method but the original variable a does not change.

Client method

int a = 10; Scope:

int b = fibonacci (a); > Calling a=10
method \

Method

Copy

public int fibonacci (int num) {

int start = num; \ Scope:

localto num =10
return start; fibonacci




.
e

Pass by “Reference” (Value)

 Objects are always passed as references: the reference
(object address) is copied, not the object.

* In this example, any changes to the fig object is
reflected in the original f object.

Client method

Fidget f = new Fidget():; ]
AnotherClass ac = new AnotherClass(); Scope: Calling
ac.callMe (£f) ; method

| /f — Fidget
public class AnotherClass { e object

public void callMe (Fidget fig) { Copy
\

A
} \ /
} fig/ Scope: local

to callMe




o

“this” Object

* Inside a method, this refers to the object for which the
method was called. this can be passed to other
constructors and methods as a parameter:

public class Yahtzee {

Player pl = new Player (this);

Refers to
this Yahtzee
object



return Statement

* A method, unless void, returns a value of the specified
type to the calling method.

* The return statement is used to immediately quit the
method and, if not void, return a value or null.

public Dice getDice () {

return myDice;

The type of the return value or
expression must match the
method’s declared return type.




Overloaded Methods

e Methods of the same class that have the same name
but different numbers or types of parameters are called

overloaded methods.

 Use overloaded methods when they perform similar
tasks.

Math class - different parameter types

public static int abs (int num) { .. }
public static double abs (double num) { .. }

String class - different number of parameters

public static String substring(int num) { .. }
public static String substring(int start, int stop) { ..



A

" Overloaded Methods (cont)

* The compiler treats overloaded methods as completely
different methods.

* The compiler knows which one to call based on the
number and the types of the parameters passed to the

method.
public class Circle
. . : {
Circle circle = new Circle(d); . . . .
circle.move (50, 100); — ?ubllC}VOld move (int x, int y)
Point center = toe

new Point (50, 100); . . _
circle.move (center) ; —p» public void move (Point p)

{ ...}




Sy S
i

Overloaded Methods (cont)

* The return type alone is not sufficient for making a
distinction between overloaded methods.

public class Circle

{
Syntax —» public void move (int x, int y)

EI‘I’OI’ \ o
public Point move (int x, int vy)

{ «.. }




Sy S
i

Static Fields

* A static field (a.k.a. class field or class variable) is shared by all
objects of the class.
Used for constants across classes.
Used to collect statistics or totals of all classes.

* A non-static field (a.k.a. instance field or instance variable)
belongs to an individual object.

* Public static fields, usually global constants, are referred to in
other classes using “dot notation”: ClassName.constName

public class Die

{
public statiec int DEFAULT SIDES = 6;

for (int a = 0; a < Die.DEFAULT SIDES; a++)



Static Fields (cont)

Usually static fields are NOT initialized in constructors.
They are initialized either in declarations or in public static
methods.

If a class has only static fields, there is no point in creating
objects of that class (all of them would be identical).

Math and System classes are examples of the above. They
have no public constructors and cannot be instantiated.

public class Die

{
public static int DEFAULT SIDES = 6;



Static Methods

e Static methods can access and manipulate a class’s
static fields.

e Static methods are called using “dot notation”:
ClassName.statMethod(...)

double x
double vy

Math.random() ;
Math.sqrt (x) ;

System.exit () ;



Static Methods (cont)

e Static methods cannot access non-static fields or call

non-static methods of the class.

public class MyClass
{

public static final int staticConst;
private static int staticVar;

private int instanceVar;

public static void main (String[] args)

{

staticVar = staticConst;

staticMethod2 (...);

instanceVar = ...;

instanceMethod(...);

}
public void instanceMethod () { .. }

Access
applies to main
and all static
methods

Okay



Non-Static Methods

* A non-static method is called for a particular object
using “dot notation” bound to an instance.

Die dl = new Die();
dl.roll () ;
int a = dl.getValue();

e Non-static methods can access all fields and call
all methods of their class, both static and non-static!

public class Die {
private int value;
private static final int DEFAULT SIDES = 6;
public void roll() { .. } B

public static void staticMethod (int num) { .. }

public 1nt rollAndGetValue () {
roll () ; ——
staticMethod (DEFAULT SIDES) ; All Okay!!
return value;




Questions?




