
Introduction to
Classes and Objects

David Greenstein

Monta Vista High School

Client Class
• A client class is one that constructs and uses objects of

another class.

public class A {
private int field1;

public A() {}
…
public void aMethod1() {}
…
private void aMethod2() {}
…

}

public class B {

…
public void bMethod1() {

A s = new A();
…
s.aMethod1();

}
…

}

B is a “client” of A

B only has access to A’s
public constructors and methods

Public vs. Private
• Public constructors and methods of a class are its

interface with classes that use it (e.g. its clients).

• All fields are usually declared private and hidden from
clients.

• Constants in a class are designated private final.

• In some rare cases, a constant is universal and it is
made public static final. (e.g. Math.PI, Math.E)

• “Helper” methods that are needed only inside the class
are declared private.

Public vs. Private (cont)
• Private constructors are used when the only client is

the class itself.

• A private field is accessible anywhere within the class’s
source code.

• Any object can access and modify a private field of
another object of the same class.

public class Fraction
{
 private int num, denom;
 ...
 public multiply (Fraction other)
 {
 int newNum = num * other.num;
 ...

Controlling Access in Java
• public modifier

Package 2

Delta

World

BetaSub

Epsilon

Package 1

Alpha

Beta

Gamma

Field/Method
public

field & method
can be “seen”

by everyone

Controlling Access in Java
• private modifier

Package 2

Delta

World

BetaSub

Epsilon

Package 1

Alpha

Beta

Gamma

Field/Method
private

field & method
can be “seen”

only inside

the class

Controlling Access in Java
• protected modifier

Package 2

Delta

World

BetaSub

Epsilon

Package 1

Alpha

Beta

Gamma

Field/Method
protected

field & method
can be “seen”

inside package

and subclass

Controlling Access in Java
• no modifier

Package 2

Delta

World

BetaSub

Epsilon

Package 1

Alpha

Beta

Gamma

Field/Method
<no modifier>
field & method
can be “seen”

only

inside package

Controlling Access in Java
• Field/Method Access Summary

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

• The AP Exam (and this class) only use public and private
modifiers.

Accessors and Modifiers
• A programmer often provides methods, called

accessors, that return values of private fields; methods
that set values of private fields are called modifiers or
mutators.

public class Fraction
{
 private int num, denom;
 ...

 public int getNum() { return num; }
 public void setNum(int n) { num = n; }

 ...
}

• Accessors’ names often start with get.

• Modifiers’ names often start with set.

Encapsulation
• Hiding the implementation details of a class is called

encapsulation. (e.g. making all fields and helper methods private)

• Encapsulation helps in program maintenance. A change in one
class does not affect other classes.

• A client of a class interacts with the class only through well-
documented public constructors and methods; this facilitates
team development.

public class A {
private int field1;

public A() {}
…
public void aMethod1() {}
…
private void aMethod2() {}
…

}

Public
interface

Encapsulated
(Hidden)

Constructors
• A constructor is a procedure for creating objects of the

class. It is different than a method.

• Most constructors are public.

• A constructor often initializes an object’s fields.

• Constructors do not have a return type (not even void)
and they do not return a value.

• All constructors in a class  
have the name of the class.

• Constructors may take parameters.

public class A {

public A() { ... }
public A(int a, String b)
{ ... }
…

}

Constructors (cont)
• If a class has more than one constructor, they must

have a different signature.

• Programmers often provide a “no-args” constructor
that takes no parameters.

• If a programmer does not define any constructors, Java
provides one default no-args constructor, which
allocates memory and sets  
fields to the default values:  
numbers to zero, objects to  
null, boolean to false, and  
char to null (0) character.

public class A {

public A() { ... }
public A(int a, String b)
{ ... }
…

}

Constructors (cont)
public class Fraction
{
 private int num, denom;

 public Fraction ()
 {
 num = 0;
 denom = 1;
 }

 public Fraction (int n)
 {
 num = n;
 denom = 1;
 }
// Continued ->>

 public Fraction (int n, int d)
 {
 num = n;
 denom = d;
 reduce ();
 }

 public Fraction (Fraction other)
 {
 num = other.num;
 denom = other.denom;
 }
 ...

}

copy constructor
no-args

constructor

Constructors (cont)
public class MyWindow extends JFrame
{
 ...
 // Constructor:
 public void MyWindow ()
 {
 ...
 }
 ...

Compiles fine, but the

compiler thinks this is

a method and uses

MyWindow’s

default no-args constructor

instead!!

• A nasty bug!!!

Constructors (cont)

public class Fraction {
 ...
 public Fraction (int n) {
 this (n, 1);
 }
 ...
 public Fraction (int p, int q) {

 num = p;
 denom = q;
 reduce ();
 }
 ...

• Constructors of a class can call each other using the keyword
this.

• Using this is a good way to avoid duplicating code, and it makes
it easier to maintain. You only need to change one constructor so
both are changed.

new Operator

public class Fraction {
 ...
 public Fraction (int n)
 {
 this(n, 1);
 }
 ...
 public Fraction (int n, int d)
 {
 num = n;
 denom = d;
 }
 ...

• Constructors are invoked when using the new operator.

• Parameters passed by the new operator must match the number,
types, and order of parameters expected by one of the
constructors.

Fraction f1 = new Fraction(2);
...
Fraction f2 = new Fraction(3,6);

References to Objects
Fraction f1 = new Fraction (3,7);
Fraction f2 = f1;

Fraction f1 = new Fraction(3,7);
Fraction f2 = new Fraction(3,7);

Refer to the

same object

f1

f2

Fraction
object

num = 3
denim = 7

f1

f2

Fraction
object

num = 3
denim = 7

Fraction
object

num = 3
denim = 7

Methods

• A method is always defined inside a class.

• Methods used by client classes are public.

• “Helper” methods only used inside the class are private.

• Style:

Method names start with a lowercase letter.

Method names are “verb-like”.

[public|private] [returnType|void] methodName(parameterList) {
 stmt1;
 stmt2;
 ...
}

signaturebodyheader

public void methodA(double x, double y){ … }

public int methodB(int m, double n, String s) { … }

Passing Parameters
• A parameter is something passed with a method call.

• Any expression that has an appropriate data type can serve as a
parameter.

• Methods can return one primitive or object.

• A “smaller” type can be promoted to a “larger” type.

methodA(3.2, Math.PI);
int a = methodB(2, 3, “hello”);

promoted typereturn type

Calling a method

Method headers

Pass by Value
• Primitive data type parameters are always “pass by

value”. A copy of the value is made of the parameter.

• In this example, num changes in the fibonacci()
method but the original variable a does not change.

int a = 10;
int b = fibonacci(a);

Client method

public int fibonacci(int num) {
 int start = num;
 …
 return start;
}

Method

a = 10

num = 10

Scope:
Calling
method

Scope:
local to

fibonacci

Copy

Pass by “Reference” (Value)
• Objects are always passed as references: the reference

(object address) is copied, not the object.

• In this example, any changes to the fig object is
reflected in the original f object.

Fidget f = new Fidget();
AnotherClass ac = new AnotherClass();
ac.callMe(f);

Client method

public class AnotherClass {
 …
 public void callMe(Fidget fig) {
 …
 }
}

Fidget
object

Scope: Calling
method

Scope: local
to callMe

Copy

f

fig

“this” Object
• Inside a method, this refers to the object for which the

method was called. this can be passed to other
constructors and methods as a parameter:

public class Yahtzee {
 …
 Player p1 = new Player(this);
 …
}

Refers to
this Yahtzee

object

return Statement
• A method, unless void, returns a value of the specified

type to the calling method.

• The return statement is used to immediately quit the
method and, if not void, return a value or null.

public Dice getDice() {
 …
 return myDice;
 …
}

The type of the return value or
expression must match the

method’s declared return type.

Overloaded Methods
• Methods of the same class that have the same name

but different numbers or types of parameters are called
overloaded methods.

• Use overloaded methods when they perform similar
tasks.

public static int abs(int num) { … }
public static double abs(double num) { … }

Math class - different parameter types

public static String substring(int num) { … }
public static String substring(int start, int stop) { … }

String class - different number of parameters

Overloaded Methods (cont)
• The compiler treats overloaded methods as completely

different methods.

• The compiler knows which one to call based on the
number and the types of the parameters passed to the
method.

Circle circle = new Circle(5);
circle.move(50, 100);
Point center =
 new Point(50, 100);
circle.move(center);

public class Circle
{
 public void move(int x, int y)
 { ... }

 public void move(Point p)
 { ... }
 ...

Overloaded Methods (cont)
• The return type alone is not sufficient for making a

distinction between overloaded methods.

public class Circle
{
 public void move(int x, int y)
 { ... }

 public Point move(int x, int y)
 { ... }
 ...

Syntax
Error

Static Fields
• A static field (a.k.a. class field or class variable) is shared by all

objects of the class.

Used for constants across classes.

Used to collect statistics or totals of all classes.

• A non-static field (a.k.a. instance field or instance variable)
belongs to an individual object.

• Public static fields, usually global constants, are referred to in
other classes using “dot notation”: ClassName.constName

public class Die
{
 public static int DEFAULT_SIDES = 6;
 ...

for (int a = 0; a < Die.DEFAULT_SIDES; a++)
 ...

Static Fields (cont)
• Usually static fields are NOT initialized in constructors.

They are initialized either in declarations or in public static
methods.

• If a class has only static fields, there is no point in creating
objects of that class (all of them would be identical).

• Math and System classes are examples of the above. They
have no public constructors and cannot be instantiated.

public class Die
{
 public static int DEFAULT_SIDES = 6;
 ...

Static Methods
• Static methods can access and manipulate a class’s

static fields.

• Static methods are called using “dot notation”:
ClassName.statMethod(...)

 double x = Math.random();
 double y = Math.sqrt(x);

 System.exit();

Static Methods (cont)
• Static methods cannot access non-static fields or call

non-static methods of the class.
public class MyClass
{
 public static final int staticConst;
 private static int staticVar;

 private int instanceVar;
 ...
 public static void main(String[] args)
 {
 staticVar = staticConst;
 staticMethod2(...);

 instanceVar = ...;
 instanceMethod(...);
 }
 public void instanceMethod() { … }
}

Okay

ERROR!

Access
applies to main

and all static
methods

Non-Static Methods
• A non-static method is called for a particular object

using “dot notation” bound to an instance.
Die d1 = new Die();
d1.roll();
int a = d1.getValue();

public class Die {
 private int value;
 private static final int DEFAULT_SIDES = 6;
 public void roll() { … }
 …
 public static void staticMethod(int num) { … }
 …
 public int rollAndGetValue() {
 roll();
 staticMethod(DEFAULT_SIDES);
 return value;
 }
}

• Non-static methods can access all fields and call 
all methods of their class, both static and non-static!

All Okay!!

Questions?

